当前所在位置: 首页 > 新闻资讯 > 原装进口
一 电动阀门的故障分析 电动阀门又叫电动执行器。提高电动执行器的可靠性,就要尽可能减少和消除故障,而事实上这种故障是多种多样的。主要是由于某一元件失灵、系统中元件/组件综合因素、电气、二次回路以及外界因素引起的。有些故障通过调整的方法就可以解决,有的故障则是由于使用时间长、精度差,需要修配、更换部件才能恢复其性能,也有些是由于原始设计不周,需要改进才能排除。 1. 电动阀门的故障特征 (1)调试阶段故障 新电动阀门的故障问题比较复杂,其特征是设计、制造、安装及管理等诸多问题交织在一起。常见的故障有泄漏严重、速度难以调整稳定,赃物或油污使传动机构卡涩或动作失灵。某些组件漏装或装错弹簧、密封件,有些属于设计欠妥,元件选择不当,动作不平稳、定位精度差等,对待这类故障,应耐心细致、慎重处理,逐一排除。 (2)运行初期和中期故障 调试后进入正常生产阶段的故障特征是,少数密封件由于装配质量和材料质量问题短期内损坏而漏油,同时粘附在管壁、孔壁上的毛刺、粘沙、杂质和赃物脱落导致某些元件工作不稳定。通常在运行中期,系统元件/组件处于很佳运行工作状态,故障率较低。 (3)运行后期故障 电动阀门运行一段时间后,各类元件/组件因工作频率和负载条件的差异,各易损件先后磨损超标,这个阶段的故障特征是位置反馈接触不良、定位精度差、稳定性下降、效率显著降低、故障率逐渐增加。这时应全面检查,更换失效部件,全面修复故障。否则将给运行人员带来很多不便,甚至严重影响机组的正常调节和控制。 2. 偶发性、突发性故障 这类故障在时间上表现为偶然突变,故障区域及产生原因较为明显,由非人为和人为因素造成,如位置反馈器件接触不良、刹车片磨损及“抱死”、零部件损坏、线圈烧坏、密封件失效等。 二电动阀门的维护保养 电动执行器主要由电机、轴承、齿轮传动系统和电子部分组成。根据美国军标MIL-HDBK-338发表的可靠性数据表明,执行器故障主要集中在电机和轴承方面。在电机故障中:绕组失效占20%,轴承失效占45%,滑环、电刷、整流子损坏占5%,其它占30%;在轴承故障中:润滑剂变质、消失占45%,污染占30%,剥蚀占5%,误调占5%,腐蚀占5%,其它占10%。可见,良好的维护管理能提高电动执行器的可靠性和有效性。 (1) 加强润滑油的清洁度管理 电动执行器的最大特点是需要使用润滑油,其粘度随油温变化。粘度过低,涡轮蜗杆及齿轮等传动部件的磨损会增大,使传动精度下降;粘度过高,动作不良。而润滑油脂的清洁度管理更为困难,涡轮蜗杆及齿轮等传动部件磨损、老化产生的杂质与水分的渗入,内部涂层的脱落、锈蚀等都会影响润滑油的清洁度。 (2)及时消除润滑油脂泄漏 由于电动执行器动作频率高、速度快,难以避免受冲击,这是导致润滑油脂泄漏的一个重要原因,一旦润滑油脂泄漏,需要及时加以解决。 (3)改善电动执行器的工作环境和使用条件 电动执行器的可靠性和寿命与它的使用情况、所处的环境、人员知识等因素有着直接的关系。只有在维护管理上改善其工作环境与使用条件,以人为本,才可能延长使用寿命。 (4)故障初期特别要加强维护 在电动执行器的所有故障中,初期故障的比例一般都比较高。初期故障大多是由于设计、制造、安装上的初步误差而引起的,这些初期故障的发现需要花费一定的功夫,解决也需要时间。因此,初期故障期间要特别加强维护管理。 (5)做好数据管理以防偶发故障 电动执行器的偶发故障一般较难预测。为了防止偶发故障,要定期检查和保养,掌握某阶段维护资料和历史档案数据,这对于准确实施故障判断和日常维护是十分重要的。 (6)提高运行维护人员的专业知识 运行维护人员专业知识的掌握程度直接影响维护管理。近年来,由于运行维护人员结构的变化,使他们对电动执行器的知识、技术的掌握有了较大提高,然而,仍有不少运行维护人员缺乏应有的专业知识和技术。现场运行维护人员大多对电动执行器处于“似懂非懂”的状况,这也是维护管理薄弱的环节所在。 为使运行维护人员方便进行现场维护管理,在进行电动执行器系统设计时要有超前意识,充分考虑到便于维护管理的实施,努力做到:系统要简化,简单的系统故障率低,维护管理容易;标准化程度高、互换性好、容易修复;集成化、组合化,调整、检查方便;引入故障诊断和定位、容错/纠错等新技术。 三 结语 在自动控制系统中,选择高质量的电动执行器,对“寿命周期费用”是很重要的,如果电动执行器选择不当或质量不过关,再完美的控制思路、高超的控制策略也难以达到预想的控制效果。为此,生产、制造和选用高可靠性的产品日益受到过程控制界的重视。
Gartner今年发布的技术成熟曲线中,出现了16个处于上升阶段的新兴技术,这些正在崛起的技术,或将成为企业未来几年战略性技术趋势的热点。 不久前,信息技术研究公司Gartner发布了2017年度“新兴技术成熟度曲线”(The Hype Cycle),这是用来评估新科技可见度的一种工具, 也是技术企业投资决策的重要风向标。 根据技术成熟演变速度及要所需时间的预测,Gartner将曲线分成5个阶段:触发期(技术萌芽期)、期望膨胀期、幻灭期、复苏期、生产成熟期。 2017年,进入Hype Cycle中的技术一共有33项。其中,以深度学习、机器学习技术为代表的人工智能众望所归,处于期望膨胀期的顶峰;曾经热炒的VR、AR则处于期望幻灭期或艰难复苏期;商业无人机也正在跌入期望落空的下行周期。 同时,Gartner揭示了处于触发期的16项新技术,他们远未成熟,相当部分只出现在科幻电影中,却很可能是下一个讲故事、炒泡沫的技术新概念。 1.智能微尘 智能微尘(Smart dust)可以是机器人、微机电系统(MEMS)或其他设备,可使智能的无线传感器缩小成沙粒或尘埃般大小,通过光学、温度、压力振动、磁场和化学成分等环境参数来检测事物。 智能微尘是可成为一个无线传感器网络中的节点,用以收集、处理信息,或与其他的节点连接。 针对智能微尘的研究尚处在实验室阶段,已有些进展,如南加州大学机器人研究实验室(由美国国防高级研究计划局资助)和JLH实验室,已经开发出一种“智能尘埃”微型摄像头。 2.4D打印 比3D打印多的一个“D”,就是时间维度,其可以通过软件对变形材料编程,在设定的时间内变形为所需形状。 4D打印可直接将设计内置到可变形的物料中,不需连接任何复杂的机电设备,按照产品设计自动折叠。目前,技术的很新前沿是在实验室环境中打印组织和器官。 2016年9月,西安的西京医院曾采用4D打印技术制作气管外支架;今年1月,哈佛团队运用4D打印转换的组织工程支架,用以支持细胞生长。 6月,瑞士的科研团队成功开发了一种4D打印结构,能以完全受控的方式改变自身形状。 3.通用人工智能 通用人工智能(AGI),又名“强人工智能”,指的是在没有编码特定领域知识的情况下,具备处理多种类型的任务和适应未曾预料情形的能力。 2017年的人工智能系统,都未能通过等同于人类智力的通用测试,目前AGI只存在于科幻小说中。 4. 神经形态硬件 可以理解为,受到神经生物学结构概念影响的、基于半导体处理器的计算,神经形态芯片与传统处理器不同,是非冯-诺伊曼结构(能在记忆体的不同区域同时执行不同操作)。 2017年,尚处于非常早期的原型阶段,惠普实验室正在开发的“点阵”,就是一种加快神经信息处理形态的引擎设计。 5. 人体机能增强 指的是借助外在手段,提供超过正常人类极限的性能,包括增加体力(如通过外骨骼)、提高感知(助听器与手机应用程序优化,或植入磁体检测电流)、提高注意力(如以药物或脑刺激)等。 未来20年,预计这将触发一个价值数十亿美元的市场,相关的伦理争议正在出现,美国有数州通过法案,禁止雇主将芯片植入作为就业条件。 6. 5G技术 即第五代移动通信技术。Gartner预计,到2020年,3%的基于网络的移动通信服务提供商(CSP)将推出5G商业化网络。从2018到2022年,国际上将主要利用5G来支持物联网通信、高清视频和固定无线接入。 华为在技术触发期就已布局5G。成为该技术的和推动者,并与全球30多家先进运营商开展创新合作,任正非的传奇看来会延续很多年。 7. 无服务器PaaS 无服务器PaaS并非没有服务器,而是将搭建、设置、管理等服务器相关工作封装起来,交由第三方供应商全权接管,让用户感受不到服务器的存在,代表真正“云式操作”的云平台服务,可简化开发、规模经营、降低基础设施成本。 无服务器PaaS预计在未来2到5年迅速成为主流。 8.数字孪生 以数字化方式为物理对象创建的虚拟模型,模拟其在现实环境中的行为,搭建整合制造流程的数字孪生生产系统,可实现从产品设计、生产计划到制造执行的全过程数字化。 例如,一架飞机,依据动力、性能等数字孪生模型,可在电脑里真实地运行起来,方便调校各种参数。 电影《钢铁侠》中斯塔克的研发过程,就利用了数字孪生技术。迄今,已有不少电气企业着手布局,比如美国通用电气(GE)、德国西门子。特斯拉公司还为其生产和销售的每一辆电动汽车建立了数字孪生模型。 Gartner 预计,简单的数字孪生将在消费电子产品等领域快速应用。 9.量子计算 这是一种遵循量子力学规律,以量子位(量子比特)为单元进行计算的新型计算模式。 一个量子位可同时保存所有可能的结果,直到读到一个被称为叠加的属性。由于叠加性的存在,使得量子位状态可处于多种可能性的叠加状态,相比于经典信息处理,量子信息处理的效率上具有更大潜力(小编也说不清楚在说什么)。 基于量子技术的硬件较为复杂,2015年开始,研究竞赛非常激烈,主要玩家有Google,IBM,Intel,Microsoft,D-Wave(加拿大量子计算公司)。其中Intel专注硅量子点技术,微软选择拓扑量子计算,两者较冷门,主要的竞争在Google和IBM之间。 骄傲的是,2017年5月,中科院宣布中国建造了全球台超越早期经典计算机的光量子
电动机电流高时,常常会表现在电动机发热严重,以下7点基本概括了电动机电流过高的原因,让我们学习一下。 1 电源问题 电源方面使电动机发生过热的原因,有以下几种: 1、电源电压过高 当电源电压过高时,电动机反电动势、磁通及磁通密度均随之增大。由于铁损耗的大小与磁通密度平方成正比,则铁损耗增加,导致铁心过热。而磁通增加,又致使励磁电流分量急剧增加,造成定子绕组铜损增大,使绕组过热。因此,电源电压超过电动机的额定电压时,会使电动机过热。 2、电源电压过低 电源电压过低时,若电动机的电磁转矩保持不变,磁通将降低,转子电流相应增大,定子电流中负载电源分量随之增加,造成绕线的铜损耗增大,致使定、转子绕组过热。 3、电源电压不对称 当电源线一相断路、保险丝一相熔断,或闸刀起动设备角头烧伤致使一相不通,都将造成三相电动机走单相,致使运行的二相绕组通过大电流而过热,及至烧毁。因此,对于三相电机一般不适用熔断器进行保护。 4、三相电源不平衡 当三相电源不平衡时,会使电动机的三相电流不平衡,引起绕组过热。 由上述可见,当电动机过热时,应首先考虑电源方面的原因(软启动、变频器、伺服驱动器亦可看作是电源)。确认电源方面无问题后,再去考虑其他方面因素。 2 负载问题 负载方面使电动机过热原因有以下几种: 1、电动机过载运行 当设备不配套,电动机的负载功率大于电动机的额定功率时,则电动机长期过载运行(即小马拉大车),会导致电动机过热。维修过热电动机时,应先搞清负载功率与电动机功率是否相符,以防盲无目的的拆卸。 2、拖动的机械负载工作不正常 设备虽然配套,但所拖动的机械负载工作不正常,运行时负载时大时小,电动机过载而发热。 3、拖动的机械有故障 当被拖动的机械有故障,转动不灵活或被卡住,都将使电动机过载,造成电动机绕组过热。故检修电动机过热时,负载方面的因素不能忽视。 3 电机本身问题 1、电动机绕组断路 当电动机绕组中有一相绕组断路,或并联支路中有一条支路断路时,都将导致三相电流不平衡,使电动机过热。 2、电动机绕组短路 当电动机绕组出现短路故障时,短路电流比正常工作电流大得多,使绕组铜损耗增加,导致绕组过热,甚至烧毁。 3、电动机星角接法错误 当三角形接法电动机错接成星形时,电动机仍带满负载运行,定子绕组流过的电流要超过额定电流,乃至导致电动机自行停车,若停转时间稍长又未切断电源,绕组不仅严重过热,还将烧毁。当星形连接的电动机错接成三角形,或若干个线圈组串成一条支路的电动机错接成二支路并联,都将使绕组与铁心过热,严重时将烧毁绕组。 4、电动机线圈接法错误 当一个线圈、线圈组或一相绕组接反时,都会导致三相电流严重不平衡,而使绕组过热。 5、电动机的机械故障 当电动机轴弯曲、装配不好、轴承有毛病等,均会使电动机电流增大,铜损耗及机械摩擦损耗增加,使电动机过热。 4 通风散热问题 1、环境温度过高,使进风温度高。 2、进风口有杂物挡住,使进风不畅,造成进风量小。 3、电动机内部灰尘过多,影响散热。 4、风扇损坏或装反,造成无风或风量小。 5、未装风罩或电动机端盖内未装挡风板,造成电动机无一定的风路。 5 返修电机问题 返修的电动机启动电流达到66%以上,同时电动机作业频繁,也会造成电流高,产生电动机过热。 6 串联电阻问题 绕线式电动机与串接电阻器等不匹配,同时电动机作业频繁,也会造成电流高,产生电动机过热。 7 电动机振动问题 电动机振动过大也可能造成电动机电流高,原因及处理方法: 1、转子不平衡——校平平衡 2、带轮不平衡或轴伸弯曲——检查并校正 3、电动机与负载轴线不对齐——检查调整机组的轴线 4、电动机安装不妥——检查安装情况及底脚螺丝 5、负载突然过重——减轻负载
交流伺服驱动器借鉴并应用了变频的技术,在直流电机的伺服控制的基础上通过变频PWM方式模仿直流电机的控制方式来实现的,也就是说交流伺服电机必然有变频的这一环节。与变频器一样,也是将工频交流电先整流成直流电,然后通过可控制门极的各类晶体管(IGBT,IGCT等)通过载波频率和PWM调节逆变为频率可调的交流电,波形类似于正余弦的脉动电。伺服驱动器发展了变频技术,在驱动器内部的电流环,速度环和位置环(变频器没有该环)都进行了比一般变频更精确的控制技术和算法运算,主要的一点可以进行精确的位置控制。现在的交流伺服的控制部分采用数字信号处理器(DSP)作为控制核心,其优点是可以实现比较复杂的控制算法,来完成伺服系统的闭环控制,包括力矩、速度和位置等闭环控制。交流伺服的应用领域:凡是对位置,速度和力矩的控制精度要求比较高的场合,都可以采用交流伺服驱动。如机床、印刷设备、包装设备、纺织设备、激光加工设备、机器人、电子、制药、金融机具、自动化生产线等。因为伺服多用在定位、速度控制场合,所以伺服又称为运动控制。1、 冶金、钢铁—连铸拉坯生产线、铜杆上引连铸机、喷印标记设备、冷连轧机,定长剪切、自动送料、转炉倾动。2、 电力、电缆—水轮机调速器、风力发电机变桨系统、拉丝机、对绞机、高速编织机、卷线机、喷印标记设备等3、 石油、化工—挤压机、胶片传动带、大型空气压缩机、抽油机等。4、 化纤和纺织--纺纱机、精纺机、织机、梳棉机、横边机等。5、 汽车制造业—发动机零部件生产线、发动机组装生产线,整车装配线、车身焊接线、检测设备等。6、 机床制造业—车床、龙门刨、铣床、磨床、机械加工中心、制齿机等。7、 铸件制造业—机械手、转炉倾动、模具加工中心等。8、 橡塑制造业--塑料压延机、塑料薄膜袋封切机、注塑机、挤出机、成型机、涂塑复合机、拉丝机等。9、 电子制造业—印刷电路板(PCB)设备、半导体器件设备(光刻机、晶圆加工机等)、液晶显示器(LCD)设备、整机联装及表面贴装(SMT)设备、激光设备(切割机、雕刻机等)、通用数控设备、机械手等。10、造纸业—纸张传送设备、特种纸造纸机械等。11、食品制造业—原料加工设备、灌装机械、封口机、其他食品包装及印刷设备等12、制药业—原料加工机械、制剂机械、饮片机械、印刷及包装机械等 13、交通—地铁屏蔽门、电力机车、船舶导航等14、物流、装卸、搬运—自动仓库、搬运车、立体车库、传动带、机器人、起重设备和搬运设备等15、建筑—电梯、传送带、自动旋转门、自动开窗等16、医疗—CT、X光机、核磁共振MRI等17、试验设备—汽车试验设备、扭矩试验设备等总之,学好伺服驱动的应用,可以设计出很多产品,而且都是很高端产品,对职业的发展意义重大。未来一段时间,我们可以着重学习伺服驱动的应用。
传感器(transducer/sensor)是一种检测装置,能感受到被测量的信息,并能将感受到的信息,按一定规律变换成为电信号或其他所需形式的信息输出,以满足信息的传输、处理、存储、显示、记录和控制等要求。按照中国国家标准GB7665-87对传感器的定义,传感器是能感受规定的被测量件并按照一定的规律(数学函数法则)转换成可用信号的器件或装置,通常由敏感元件和转换元件组成。中国传感器分类:编码器、光纤传感器、光电传感器、接近传感器、行程开关、安全开关、微动开关、视觉传感器、测量传感器。中国传感器的市场近几年一直持续增长,传感器应用四大领域为工业及汽车电子产品、通信电子产品、消费电子产品专用设备,其中工业和汽车电子产品领域传感器市场占比约为42%。睿工业认为,目前我国传感器在医疗、环境监测、油气管道、智能电网、可穿戴设备等领域的创新应用也将成为新热点,有望在未来创造更多的市场需求。而市场的驱动,也正是技术不断变革、进步的动力。如今,国内传感器共分10大类、24小类、6000多个品种,而美国约1.7万种传感器。国外厂商西门子、霍尼韦尔、欧姆龙等公司占有较大份额,国内厂商虽然有了较大发展,但远远不能跟上形势的要求。由此可见,我国传感器技术水平与种类数量都与技术先进国家有很大差距。而随着物联网技术的发展,对传统传感技术又提出了新的要求,产品正逐渐向微机电系统(MEMS)技术、无线数据传输技术、红外技术、新材料技术、纳米技术、陶瓷技术、薄膜技术、光纤技术、激光技术、复合传感器技术、多学科交叉融合的方向发展。其中,MEMS是目前世界制造业的热点,MEMS以其微型化的优势,在加速度传感器、陀螺仪、光学MEMS、图像传感器等领域都有相关应用,在军事领域和以汽车、电子、家电等为代表的民用行业有着极为广阔的应用前景。2015年5月19日,《中国制造2025》正式发布,推动我国传感器及物联网产业向着融合化、创新化、生态化、集群化方向加快发展。2016年7月28日,国务院发布了《“十三五”国家科技创新规划》。其中,在“发展新一代信息技术,发展智能绿色服务制造技术”章节中,提出重点加强新型传感器的研发,加强工业传感器制造基础共性技术研发,提升制造基础能力;在先进制造技术专栏中,提出开展MEMS(微机电系统)传感器的研发,提高自主研发能力,开展工业传感器核心器件、智能仪器仪表、传感器集成应用等技术攻关,加强工业传感器技术在智能制造体系建设中的应用,提升工业传感器产业技术创新能力;在海洋资源开发利用技术专栏中,提出发展近海环境质量监测传感器和仪器系统。
万用表又称为复用表、多用表、三用表、繁用表等,是电力电子等部门不可缺少的测量仪表,一般以测量电压、电流和电阻为主要目的。万用表按显示方式分为指针万用表和数字万用表。是一种多功能、多量程的测量仪表,一般万用表可测量直流电流、直流电压、交流电流、交流电压、电阻和音频电平等,有的还可以测交流电流、电容量、电感量及半导体的一些参数(如β)等。万用表不仅可以用来测量被测量物体的电阻,交流电压还可以测量直流电压。甚至有的万用表还可以测量晶体管的主要参数以及电容器的电容量等。下面小编就举几个万用表的实例吧。 如何用万用表检测照明线路漏电故障 照明线路一旦出现漏电现象,不但浪费电能,而且还可能引起触电事故。漏电与短路的本质相同,只是事故发展程度不同而已,严重的漏电可能造成短路。因此,对照明线路的漏电,切不可掉以轻心,应经常检查线路的绝缘情况,尤其是发现漏电现象时,应及时查明原因,找出故障点,并予以消除。 照明线路漏电的主要原因是:一是导线或电气设备的绝缘受到外力损伤;二是线路经长期运行,导致绝缘老化变质;三是线路受潮气侵袭或被污染,造成绝缘不良。 首先,判断是否确实漏电。可用指针式万用表的R×10k档测测绝缘电阻的大小,或数字万用表置于交流电流档(此时相当于一个电流表),串联在总开关上,接通全部开关,取下所有负载(包括灯泡)。若有电流,则说明存在漏电现象。确定线路漏电后,可按以下步骤继续进行检查。 1、判断是相线与零线间漏电,还是相线与大地间漏电,或者二者兼而有之。方法是切断零线,若电流表指示不变,则是相线与大地漏电;若电流表指示为零,是相线与零线间漏电;电流表指示变小但不为零,则是相线与零线、相线与大地间均漏电。 2、确定漏电范围。取下分路熔断器或拉开断路器,若电流表指示不变,则说明总线漏电;电流表指示为零,则为分路漏电;电流表指示变小但不为零,则表明是总线、分路均有漏电。 3、找出漏电点。经上述检查,再依次断开该线路灯具的开关,当断开某一开关时,电流表指示返零,则该分支线漏电;若变小则说明这一分支线漏电外,还有别处漏电;若所有灯具开关断开后,电流表指示不变,则说明该段干线漏电。依次把事故范围缩小,便可进一步检查该段线路的接头、以及导线穿墙处等地点是否漏电。找到漏电点后,应及时消除漏电故障。负载端开始往前端一步步检测,查看工作是线路造成还是元件造成的,就可以判断出来了。排除短路故障点后,装接合格的熔丝再送电。 照明线路短路、开路、漏电是最常见的故障,只有我们进行具体的测量和分析,才能准确地找出故障点,判明故障性质,并采取有效措施,使故障尽快消除。 如何用万用表判断电动机转速及转速 如果电动机没有铭牌,又没有转速表,在不拆开电动机的情况下,可用万用表判断电动机的转速。 用万用表的最小毫安档分别接上面已经判断出来的某一个绕组的首端和尾端,将转子慢慢匀速转动一圈,看万用表指针摆动几次,如果摆动一次,说明电流正、负变化一个周期,可以判断它是2极电动机。同样理由,摆动2次判断它是4极电动机,摆动3次判断它是6极电动机,依次类推。 判断出电动机的极数,就可知道它的大致转速(略低于同步转速)。电动机的同步转速与磁极数的关系,在电源频率为50Hz时基本可以这样推算:二极为3000r/min,四极为1500r/min,六极为1000r/min。 在操作时,万用表表笔与端子要保持接触良好。否则,转动转子的过程中表针均会摆动,判断不出结果。 如何用万用表查找电缆断点 当电缆或电缆的内部出现断线故障时,由于外部绝缘皮的包裹,使断线的确切位置不易确定。用数字万用表可以将这一难题轻松搞定。 具体方法:把有断点的电线(电缆)一端接在220V市电的火线上,另一端悬空。将数字万用表拔至AC2V挡,从电线(电缆)的火线接入端开始,用一只手捏住黑表笔的笔尖,另一只手将红表笔沿导线的绝缘皮慢慢移动,此时显示屏显示的电压值大约为0.445V左右。当红表笔移动到某处时,显示屏显示的电压突然下降到0.0几伏(大约是原来电压的十分之一),从该位置向前(火线接入端)的大约15cm处即是电线(电缆)断点所在。 用此法检查屏蔽线时,如果仅仅是芯线折断而屏蔽层没断,则此法是无能为力的。 用这种方法还可以寻找故障电热毯等电阻丝的断路点
在内部开发和eDrive电驱动技术的战略部署下,电机在其中扮演另一个重要角色。宝马i和iPerformance车型使用的电机具有较高的体积和重量功率比,能够在高速转动范围内提供线性额定功率并保证出色的效率。 定子和转子都在丁戈尔芬格工厂生产,然后与电机外壳连接,装配线非常灵活,员工都进行过培训,能够执行不同的操作。U形布置确保了灵活性与高效率的结合。在所有的工作站,组件以符合人体工程学的方式递送给操作者。 同时,工作站可调节高度和倾斜度,以适应人体工程学的需要。大部分操作都可以用坐姿或站姿进行,这种特殊方式有助于eDrive电驱动组件的高生产质量。 电机所具备的高输出比和运动特性是基于永磁同步电动机技术不断优化的结果。 例如,定子由长达两千米被极度压缩的铜线构成。定子生产要对金属板进行封装和绝缘,然后拉伸切割形成线圈。 金属板通过激光焊接进行接合。转子组件也采用特殊工艺制备。将磁铁装入转子并铆接后,冷却的转子轴无压烧结到加热部件,从而转子磁化,整个制备组装过程被大大简化。在电机总装的很后阶段,定子首先于150度左右无压烧结进入马达壳体,然后插入转子。在其它部件都被安装好并在相关功能测试完毕后,完全装配好的电机可以安装到车上了。 宝马电机制造视频 友情提示,建议在wifi下欣赏,留着流量学知识!End 来源:电动网
对初学者来说,复杂的电子电路图上布满了密密麻麻的电路符号,根本不知从何下手识图,也不能从电子电路原理图中找出电子产品的故障所在,更不能得心应手地去设计各种各样的电子电路。其实,只要对电子电路图进行仔仔细细观察,就会发现电子电路的构成具有很强的规律性,即相同类型的电子电路不仅功能相似,而且在电路结构上也是大同小异的。任何一张错综复杂、表现形式不同的电子电路图都是由一些最基本的电子电路组合而成的,构成复杂电子电路图的最基本电路称为单元电路。只要掌握了基本单元电路,任何复杂的电路都可以看成是基本单元电路的集合。 1、从基本元器件入手,为识图打下良好的基础。 电子元器件是构成电子产品的基础。因此,了解电子元器件的基础知识,掌握不同元器件在电路中的电路表示符号及各元器件的基本功能特点是进行电子识图的步。 2、掌握基本单元电路,为识读复杂电路打下基础。 在学习基本单元电路时,要掌握好基本单元电路的工作原理、电路的功能及特性、电路典型参数、组成电路的元器件、每一个元器件在电路中所起的作用及电路调试方法等。 3、分解复杂电路。 复杂电路被分解为基本单元电路后,就可以根据一个个基本单元电路的功能、特点进而分析到整个复杂的电子电路,设计出各种各样的电路。 4、掌握基本单元电路之间的连接方法。 基本单元电路之间可以直接连接起来,叫做直接耦合;通过变压器的初、次级间的磁感应来实现信号的连接,叫做变压器耦合;用电容来连接,叫做电容耦合。 5、明确各分体元器件在电子电路中所起的作用。 为了方便初学者识图,现将各分体元器件在电子电路中不同的接法及与不同元器件连接所起的作用归纳如下。 电阻器:在电路中主要起限流、分压的作用。 1)电阻器与电阻器在电路中并联一般是为了增大电阻器的功率。 2)电阻器与电阻器串联并从中间引出抽头,在一般情况下是为了得到电阻器上的分压。 3)电阻与稳压管串联,电阻器为稳压二极管的限流电阻器。 4)电阻器与电容器串联组成微分电路,在这里电阻器为电容器的充电限流电阻器,充电常数由RC的乘积觉定。在这里如果微分电路与二极管或单向晶闸管等半导体器件并联,且电路中有电感性负载,则微分电路在电路中起阻容吸收的作用,即吸收电感器由于在开机、关机一瞬间产生的较高感应电动势,保护半导体器件不因太高的感应电动势而击穿损坏。 5)电阻器与电容器并联,在一般情况下电阻器为电容器的放电电阻器,放电常数也由RC决定。 6)电阻器与电感器并联,电阻器为电感器的放电电阻器。 7)在放大电路中,电阻器与晶体管基极相连,在一般情况下电阻器为晶体管基极偏置电阻电阻器;电阻器与集电极串接则为集电极负载电阻器,电阻器与发射极串接则为发射极电阻器。 电容器:在电路中的主要作用是储能、滤波等。它的特点是通交流、隔直流。 1)电容器与电感器并联组成谐振电路(LC振荡电路)。 2)电容器与晶体管放大电路的输入、输出端连接,电容器起输入、输出耦合作用。 3)电容器与晶体管的发射极串接,在一般情况下电容器起交流旁路作用。 4)在放大电路的输入端,电容器与输入信号并接,一般起抗干扰信号的作用。 电感器:电感器在电路中的作用为滤波、储能。电感器的主要特点是通直流、隔交流。 二极管:在电路中的作用是整流。 1)二极管与电感器并联,起到续流的作用,以防止电感器在断电时,电感中的反向自感电动势对电路中的晶体管器件造成危害。 2)二极管与放大电路的输入信号并联接入晶体管的基极端,起到输入电路的限幅和钳位的作用。 3)二极管在脉冲变压器的二次侧,起到止逆流的作用。 晶体管:在电路中的主要作用为放大信号。 1)晶体管在电路中可构成各种放大电路,如共发射极电路、共集电极电路、共基极电路等。 2)晶体管在电路中可起到非线性电阻的作用,如在恒流源电路和串联型直流稳压电路中等。 场效应管:在电路中的作用与晶体管相同,即放大作用和非线性电阻的作用。除此之外,场效应管还有一个显著的特点就是输入电阻高。 变压器:在电路中的主要作用是能量转换。它的具体作用是作为电路的电源变压器、放大电路极间信号耦合、脉冲变压器及阻抗匹配等。 6、掌握各种典型集成电路块的原理、功能、引脚排列及作用。 由于电子技术的飞速发展,集成电路块成千上万,不可能对每一块集成电路都花时间去学习,但是必须有针对性地对一些常用的模拟集成块和数字集成电路块的原理、功能、引脚的排列及作用等了解清楚。对于生疏的集成电路块,首先必须查找相关资料,弄清楚它的功能、引脚排列及作用等,这样才能在识图中做到心中有数。对于数字电路,除了掌握一些功能芯片的作用外,还要理清其逻辑关系。
【中国智能制造网 技术前沿】随着工业无线传感器网络技术的不断成熟,以及市场需求的不断提升,工业无线传感器网络产品对传统工业传感器替代效果不断提升。无线传感器网络日渐成熟 工业领域应用前景广阔 2015年,我国工业无线传感器网络产品在工业传感器市场中的占比约为4.9%,规模达到7.8亿元。到2020年,我国工业无线传感器网络产品在工业传感器市场中的占比将达到为11.7%,市场规模预计达到36亿元,年复合增长率高达35.8%,市场前景广阔。 工作原理 无线传感器的组成模块封装在一个外壳内,在工作时它将由电池或振动发电机提供电源,构成无线传感器网络节点,由随机分布的集成有传感器、数据处理单元和通信模块的微型节点,通过自组织的方式构成网络。 它可以采集设备的数字信号通过无线传感器网络传输到监控中心的无线网关,直接送入计算机,进行分析处理。如果需要,无线传感器也可以实时传输采集的整个时间历程信号。监控中心也可以通过网关把控制、参数设置等信息无线传输给节点。数据调理采集处理模块把传感器输出的微弱信号经过放大,滤波等调理电路后,送到模数转换器,转变为数字信号,送到主处理器进行数字信号处理,计算出传感器的有效值,位移值等。 三大优势 随着无线传感器网络技术的发展与成熟,无线传感器网络产品开始凭借自身独特的优势,开始逐步替代传统有线传感器产品,并渗入到工业领域的各个环节,成为市场上的新兴热点。无线传感器与传统有线传感器相比存在,其优势主要体现在以下几个方面: 较高的灵活性。适用于有移动需求但不方便布线的情况,如起重机、移动装瓶设备、交通行业、自动引导车辆系统和单轨输送机等。 较高的可靠性。无线传感器可以避免运动带来的损伤,如长拖链所带来的导线弯折、旋转运动导致电缆线的扭曲折断等。同时,排除了有线网络中由连接器引起的故障因素。 较高的安全性。随着技术的发展和新威胁的不断出现,安全维护的升级能力是必不可少的。新的加密策略和隐蔽的数据传送预示着无线的安全级别将超过有线系统。另外在一些危险的极端环境,如不方便布线的爆破场合,无线传感器可以保障人员安全。 应用领域 无线传感器网络具有的优势特点使得它的市场用途非常广泛,几乎涉及到社会经济活动中的各个领域。 一是管道管沟监测领域,比如供排水、供暖、供燃气、供石油等管道温度、压力、流量的参数监测。二是仓库监测领域,比如粮库、药品仓库、食品仓库、工厂危化品仓库等温湿度、温度、易燃易爆气体、有毒有害气体参数监测。三是井盖、消防栓监控领域,比如城市井盖、消防栓等运行状态的监控。四是液位水位监测领域,比如河流、大坝、水库以及油罐等水位液位的参数监测。五是大棚监测领域,比如蔬菜、花卉、养殖(鸡鸭猪舍等)等温湿度、光照、气体…参数监测。六是水产养殖监测领域,比如鱼塘、网箱等水质、气体参数监测。七是大气环境监测领域,比如公园、学校、社区等公共场所有毒有害气体的监测。除了以上7个主要应用领域外,还有其他的应用,比如军事,科考等方面。 物联网中的关键技术之一就是传感器技术。无线传感器网络在工业物联网应用过程中起到了枢纽的作用,负责将独立的传感器单元通过无线网络连接起来,并将各个传感器采集的数据传输汇总,以实现对空间分散范围内物理或环境状况的协作监控,进而根据这些信息进行相应的分析和处理。如今,现代化工业生产向着大型、快速、高效、低耗和环保的方向发展。而无线传感器网络将凭借其灵活、安全、可靠、便捷以及低成本等优势,在未来企业智能化生产中发挥特殊的作用。
变频器定期的保养和检查维护检查注意事项1、维护检查时,务必先切断输入变频器(R.S.T)的电源。2、确定变频器电源切断,显示消失后,等到内部高压指示灯熄灭后,才实施维护、检查。3、在检查过程中,不可以将内部电源及线材,排线拔起及误配,否则会造成变频器不工作或损坏。4、安装时螺丝等配件不可置留在变频器内部,以免电路板造成短路现象。5、安装后保持变频器的干净,避免尘埃,油雾,湿气侵入。
友情链接: 赛力斯
Copyright© 2013-2024 天津西纳智能科技有限公司 版权所有 电话:400-961-9005 传真:400-961-9005 联系人:余子豪 400-9619-005 邮箱:sales@e-xina.com 地址:天津市和平区南京路235号河川大厦A座22D
津公网安备12010102000946号 | 津ICP备13001985号-1
扫描微信二维码关注我们